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Chapter 6 rrhermalhydraulic Network Simulation

6.1 Introduction

6.1.1 Chapter Overview

This chapter introduces some more advanced numerical algorithms for solving systems
of ordinary differential equations such as found in the modelling of thermalhydraulic
networks.

Explicit algorithms are simple to devise and program but they are restricted in time step
so as to ensure stability.

The more implicit the formulation, the more stable the solution in most instances.

Larger thne steps can be used for implicit algorithms but the accompanying matrix
manipulation is computationally costly.

Herein, we explore the tradeoffs.
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6.1.2 Learning Outcomes

6·2

Objective 6.1 The student should be able to apply the various numerical
methodologies (fully explicit to fully implicit) to special cases of the
thermalhydraulic system equations.

Condition Workshop or project based investigation.
-

Standard 75%.

Related The various numerical methods.
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a a a
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Thermalhydraulic Network Simulation 6·3

Objective 6.2 The student should be able to produce a general node-link code based
on the cumulative concepts presented in this course.

Condition Workshop or project based investigation. A skeleton code is to be
suppiied.

Standard 75%. The code may be written in the computer language of choice.

Related The integral form of the conservation equations.
concept(s) The rate form of the equation ofstate.

The water properties.
The numerical algorithms.
Computer programming.

Classification Knowledge Comprehension Application Analysis ISynthesis Evalu
ation

Weight a a a a
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Objective 6.3 The student should be able to evaluate the efficacy of the various
numerical algorithms.

Condition Workshop or project based investigation.

Standard 75%.

Related
concept(s)

Classification Knowledge Comprehension Application .Analysis Synthesis Eval1j
ation-----

Weight a a a a
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6.1.3 Chapter Layout

Porcsching's method is explored to show the methodology and its limitations.

Then the rate form of the equation of state is used with the conservation equations to
develop a generalized fully implicit (at least in terms of the main variables) fonnalism.

Porsching's method is a special case of the general method.

The chapter concludes with some programming notes.

6-5
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6.2 Porsching's Method

One of the more successful algorithms for thermalhydraulic simulation is based on the
work ofPorsching [POR69, POR71].

6-6

This algorithm, involving the Jacobian (derivative ofthe system state matrix), is used in
the Ontario Hydro program SOPHT [eHA77] and evolved into forms used in RETRAN
[AGE82].

The strength ofPorsching's approach lies in its recognition of flow as the most important
dependent parameter and, hence, its fully implicit treatment of flow.

This leads to excellent numerically stability, consistency and convergence.

Further, the Jacobian permits a generalized approach to the linearization of nonlinear
systems.

This allows the development of a system state matrix which contains all the system
dynamics in terms of the dependent parameters ofmass, energy and flow.
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Back substitution finally gives a matrix rate equation in terms of the system flow (the
unknown) and the system derivatives.

6-7

While this approach is certainly a proven and successful one, it has some disadvantages.
The matrix rate equation involving the Jacobian is as complicated as it is general.

The resulting expressions are somewhat obtuse and it is difficult to obtain an intuitive
feel for the system.

This complexity also hinders implementation in a simulation code and makes error
tracking a tedious process.

The pervasiveness and obtuseness of the algorithm begs a revisit so as to distil the salient
features, leaving them exposed for pedagogy and further scrutiny.
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Chapter 5 discussed the use of the Rate Form of the equation of state.

This work showed that by casting the equation of state in the form of a rate equation
rather than the normal algebraic form, the system state matrix can be more logically
formed from the normal conservation rate equations for mass, energy and momentum
plus the pressure rate equation.

These form the four cornerstone equations in therrnalhydraulic systems analysis (figure
6.1 ).

Numerical implementation of the rate form proved to be very successful, leading to
roughly a factor of 10 improvement over the algebraic form of the equation of state,
largely due to the iterative nature ofthe algebraic form.

6-8

Incorporating the implicit pressure dependency in the numerical method also drastically
improved the numerical stability.
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Thermalhydraulic Network Simulation 6-9

Since Porsching's method also carried the pressure dependency implicitly (via the
Jacobian), the question arises as to how the Rate fonn compares the Porsching's method.

This chapter is devoted to an explanatory derivation of the fully-implicit back-substituted
fonn (FIBS), which is a more general than the Rate fonn. .

It is shown that the Porsching fonn is identical to the Rate fonn and is a subset of the
fully-implicit back-substituted fonn and is easily derived from it [GAR87b, reproduced
as appendix 6].

The FIBS fonn thus offers an alternative to Porsching, is found to be of some
pedagogical usefulness and is far more intuitive and easier to code.
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6.3 Derivation of FIBS

6-10

Following Porsching [POR71], the general form ofsystem equations can be written
u= f(t, u) (I)

where U is the vector ofdependent mass, total enthalpy and tlow variables {Mi, Hi' Wj }

for all nodes i=l ..N and all links, j==1 ..L. Equation 1 is linearized, assuming no explicit t
dependence to give:

it = ft + nt .J it

or
dU = ~t ft + ~t J du

to give
[1 - tlt J]~u =L\t ft

where J is the system jacobian, composed of elements afk leul •

(2)

(3)

(4)
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For typical thermalhydraulic systems using the node-link notation!:
dW. A.

1. == LJ (1\ I- SwpLlPu - Pd - SwpLlPd) + kj ~j + Swwl:1Wj ) + bwj
J

I:1W.
J

I:1t

Typically bwj = (AlLj) (hjpjg + I:1Ppump) where h j = height.

6-!!

(5)

dM.
1

dt
=='E (W. + SMW I:1W.) - 'E (W. + SMW /1\V.) z

. J J. J 1 J
J'ltd J'ltu

I:1M.
1

I:1t
(6)

1 Porsching actually uses U, total energy rather than H, total enthalpy in a hybrid
form:

u. == " (RIM.) W. - ,. (H.IM.) W. + Q.
1 L.-t JJ J L.-I JJ J 1

j'ltd j'ltu

There is no advantage to tracking both Hand U in a simulation; thus in this course, H is
used throughout.
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dH. " (H. + SHH AH.) " (H. + SHH AH.)
-' =LJ (w.+ SHW AW.) J J - LJ (W.+ SHW AW) J J
dt jlfd J J (Mj + SHM AMj ) jV'u J J (Mj + SHM AMj )

L (
W.H. SHWH. SHH W, SHM W. H. 'J= J J + JAW. + J AH. _ J JAM.
M M J M J 2 J

~ . I . . M
J J J j

L (
w.H. SHWH. SHH W. SHM W. H. J- J J + JAW. + J AH. _ J J AM. + Q.
M M J M J 2 J 1

jV'u j j j M.
J

",AH j

At

6-12

(7)

ap. ap. ap.
DoP. 1 DoM. +

1
~H. + _1 LlV.= ---

I aM. 1 aH. 1 avo 1
1 1 1 (8)

~P. DoM. ~H.
1

= Cli
1 + C2i

1 for constant volume.or --
Dot Dot Dot

where j indicates a sum over all links for which the node i is a downstream (d) or
upstream eu) node.
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Thermalhydraulic Network Simulation

Switches, S, are used to provide user control over the degree of implicitness:
o== explicit
1 = implicit.

The system unknovms to be solved for are 11W, 11M, I1H and LlP using equations 5, 6, 7
and 8.

The general strategy is to reduce the number of unknowns so that the size of the matrices
to be inverted in the simultaneous solution of these equations is reduced.

The mass equation 6 is sitnple and is used to eliminate ~M in terms of11W.

Flow is chosen as the prime variable since it is the main actor in thennalhydraulic
systems.
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Thermalhydraulic Network Simulation ______________6-14

The enthalpy equation poses a problem as it is too complex to petmit a simple
substitution.

Porsching surmounts this by setting SHH = SlIM = 0, ie making the solution explicit in
specific enthalpy.

However, we need not make this assumption; by casting the equations in matrix
notation, the full implicitness can be retained while still allowing the back
substitutions to be made.

Proceeding then, using matrix notation:
LlM = L\t AM'V{[Wt+S

MW
LlW] (9)

A MW =

where, for a 4 node - 5 link example (Figure 6.2):
links =>

-1 0 0 1

1 -1 0 0

l
0 1 -1 0

o 0 1 -1

o
1

o
-1)

nodes
~

(10)
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Thermalhydraulic Network Simulati(>n

This matrix contains the total system geometry.

6-15

It is constructed by the following procedure:
For each column (link), insert -1 for the upstream node and +1 for the downstream
node for that link since the link supplies (adds) flow to the downstream node and
takes it away from the upstream node. Flow reversal is handled automatically since
the sign of W will take care of mass accounting properly.

The form of other matrices in the following are derivable from AMW.

This can be llsed to advantage in coding. The input data for each link need only contain
pointers to the upstream node and the downstream node for that link. This allows AMW to
be created.

In short, the upstream node and downstream node for each link completely defines the
geometry and this can be used to programming advantage.
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Thermo/hydraulic Network Simulation

The flow equation is:
!:iW = !:it{AWP[pt+Swp!:ip] +AWW[Wt+2Sww!:iW]+B W}

6-16

(11)

Where:
-kJ!W11

0
AWW = I -kl'W2 1 I (12)

0 -kslWsl
\

A/LJ -A/L1 0 0

0 AiL 2 -AiL 2 0

A WP = I 0 0 A/L) -AiL) I (13)

-AiL 4 0 0 A/L4

0 -A/Ls 0 A/Ls
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Thermalhydraulic Netwo,-k Simulation

note that AWP is formed easily from A~1W by the following procedure:
First multiply A~ by {-A/L1, -A/L2, '" -As/Ls}"l
Then transpose the resulting matrix to give Awp.

6-17

BW =

A/L1(h1P1g + ~PpumPl)

AiLi~Plg + ~Ppump2) (14)
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Th~rmalhydraulic Network Simulation

Finally:

6-18

D.H =D.t(AHW[Wt+SHWD.W]+SHHAHH'ilH* - SHMAHM'LiM* +B H) (15)

where D.H' and D.M* refer to the enthalpy and mass associated with upstream properties
of the links (ie the transported properties).

Thus
I

D.H1 D.M1

D.H2 D.~

D.H* = I D.H3 , D.M* = 6.M3

D.H4 LlM4

D.H4 D.M4

-H/M1 0 0 +HiM 4 0

, HIlMI -H2~ 0 0 H/M4
AHW =

0 H2~ -H/fv13 0 0

0 0 H/M3 -Hifv14 - HiM 4

(16)

(17)
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Thermalh)'draulic Network Simulation

For each link, the elements of the column are formed from the link How, Wj and the
upstream properties (H and M). Each link has a sink and source node.

6·19

Similarly

-W/M1 0 0 +WiM4 0

W/M1 -W2~ 0 +W/M4
AHH* = (18)

l
0 W2~ -W/M3 0 0

0 0 W3~ -WiM4 -W/M4

2
0 0

2
0-W1H/M1 W4Hil\14

2 2 0 0
2

W1H/M1 -Wll/M2 WsH/M4
AHM = (19)

0 W2H2~
2 0 0-W3H/M3

0 0 2 2 2
W3H3/M3 -W4Hi NI4 -WsH/M4
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We wish to write the matrix equations eliminating the * parameters, ie convert LlH* to
LlH, LlM* to L1M. To do this we introduce a transfer matrix, ILN so that

LlH * == I LN.6H (20)

where

(21)links
n

nodes =>

~1
100

010

o 0 1 0

000 1

000 1

where ILN is formed by entering 1 for the node that is the upstream or source node fOf
each lillie
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Now, we can define:

AHH* ~H*- AHH* ILN ~H

and AHM* ~M' = AHM* ILN ~M

'" AHM ~M.

Thus

6-21

(22)

(23)

~H = ~t {AHW (W + SHW ~W) + SHH AHH ~H - SliM ARM ~M + BH
} (24)

Substituting in the mass equation 9:

~H = ~t {AHW (W + SHW ~W) + SHHAHH ~H - ~t SHMAHM AMW (W+ W MW ~W)

+ BH
} (25)
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Solving for LlH:

6-22

LlH = Llt[I - Llt SHH AHHr' {AHW (W + SHW LlW) - Llt SlIM ARM~(W + SMW LlW)
+ BH

} (26)

So now we have LlM and LlH in terms of LlW.

Recalling equation 8, in matrix notation, we have:

where

LlP = C1 LlM + C2 LlH, (27)

c --,

(C ll

o

C12 0

C13

C'4

(28)
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Similarly for C2•

6-23

We can back-substitute 11M and I1H into equation 8 and the result into the flow equation
to leave a matrix equation in 11,V only, which can be solved by traditional numeric
means. Hence,

I1P = I1t C AM"N rw + S 11W) + I1t C fI - I1t S A HH]-! [AHW (W + S IIW)! \. MW 2~ lUI. HW

- llt SHM AHM AMW (W + SMW 11W) + BH
]

:= I1t APw
, W + I1t APW2 IIW + I1t BP (29)

where: A Pw
, = C, A MW + C2 [I - I1t SmI AlUIJ! [AHW

- I1t SIDY1 AHM AMW] (30)

A PW2 = SMW C! AMW + C2 [I - I1t SHH AlUIr' lSHW A HW -l1t SHM SMW ARM AMW] . (31)

BP = C2 [I - I1t SlUI AmIr! BH (32)
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Thus:

6-24

/1W = /1t {AWP [PI + /1t Swp (APW1 W + APW2 /1W + BP)] + AW'N [W + 2Sww AWW /1W]
+ BW

} (33)

Collecting terms in /1W:

[I - /1t(2 Sww AWW + /1t Swp AWP APW2)] AW

= At {(AWW + /1t Swp AWp APW1] WI + BW+ AWp [PI + /1t Swp BPn (34)

which is of the form

A/1W=B

which can be solved by conventional means to yield /1W.

Then we can directly calculate LlM, ~H and /1P using equations 9, 15 (or 24), and 27.
Associated changes in temperature can be obtained as for pressure, using the appropriate
equation of state coefficients.
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6.4 Special Cases

To summarize, the general solution is given by the following equations:

6-25

BP = Cz [I - .6.t SHH AHHr1 BH (37)

[I - ~t(2 Sww AWW + ~t Swp AWp APW2
)] ~w

= ~t { [AWW + ~t Swp AWp APW1
] W + BW + AWp [pt + ~t Swp BP] } (38)

~M = ~t AMW [W + SM\\T ~W] (39)

~p = C 1~M + Cz~H (41)
Special cases of this general algorithm are as follows:
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6.4.1 Fully explicit: all S's = 0

APW1 = C 1 AMW + C2 AHW

APW2 = 0

BP=C BH
2

:. ~W = ~t { AWW W + BW + AWP pt }

~M=~tAMWW

~H = ~t {AHW W + BH
}

~p = C1 ~M + C2 ~H,

as expected.

6-26

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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6.4.2 Porsching's semi-implicit (SHH = c and s"" = 0, all other S's = 1)

A PW1 = C1 AMW + C2 Ah-vl

APW2 = C AMW + C AHW
1 2

BP = C BH
2

[I - ~t(2 Aww + ~t AWP APW2
)] ~W

= ~t { [Aww + ~t AWP APW1
] W + BW + AWP [PI + ~t BP] }

~M = ~t AMW [W + ~W]

~H = ~t { AHW (W + ~W) + BH
}

~p = C j ~M + C2 ~H

6-27

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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==-==:;.:.:===~-------------

6.4.3 Fully Implicit: All S's = 1

APW1 = C1 AMW + C2 [I - at AHHr1 [AHW
- ~t ARM AMW

]

APW2 = C1 AMW + C2 [I - at AHHr1 [AHW
- At AHM AMW

]

BP = C2 [I - at AHHr1 BH

[I - at(2 AWW + At AWP APW2
)] AW

= At { [Aww + At AWP APW1
] W + BW + AWP [pt + At BP] }

,~M = At A MW [W + AW]

L\H = at {AHW (W + aw) + AIm AH - AHMAM + BH
}

ap = C1 aM + C2 aH

6-28

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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6.5 Programming Notes

It should be noted that the full system geometry is contained in AMW
•

All other matrices are derived from this matrix and node/link properties.

Programming is thus very straightforward.

6-29

In addition, the switches, S, can be varied at will to control the degree of implications of
the system variables, W, M, Hand P.

The fully-implicit method is more complicated than the semi-implicit method in that it
requires the addition and multiplication of more matrices as well as a matrix inversion.

The effect of these additional operations is quite costly, especially when a large number
of nodes is needed. In one case study [HOS89], for 9 nodes and links, the cost is a 50%
increase in iteration time. But this becomes a 250% increase as one approaches the 36
node/link case.
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By handling the matrix operations as efficiently as possible, some increase in speed
should be attainable for both models.

Using efficient assembly routines (rather than FORTRAN) for the matrix operations.
yielded a 10 to 20% reduction (increasing from 9 nodes to 36 nodes) in the time per
iteration for the semi-implicit method and a 15 to 25% reduction in the fully-implicit
case.

Usually the matrices contain mostly zeros and, in the case of a circular loop, may be
diagonally dominant in nature (i.e. non-zero elements occupy one, two or three stripes
through the matrix).

By writing routines specific to the nodal layout for handling the matrix operations,
significant gains in speed may be possible.

However, the simulator will no longer be general in nature and the routines may have to
be changed if the nodal layout is altered.
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lfthe multiplication of two large matrices is desired, say NxN in dimension, the time to
carry out the operation (N3 multiplications and N3additions) can be very significant.

However, it is possible to reduce the number of individual operations without losing the
generality of the method.

Take, for example, the multiplication of AWP and APw
• The rows in the former term

pertain to links and the columns to nodes.

Each row will only contain two terms located in the columns corresponding to the
upstream and downstream nodes of that particular lin1e

Thus, knowing which are the upstream and downstream nodes for every link, it is only
necessary to do two multiplications and one addition to obtain each element of the
product matrix (2N2 multiplications and N2 additions).

By taking advantage of having only two elements in each row ofthe former term or only
two elements in each column of the latter term wherever possible, significant savings in
time may be observed. With this improvement in the code, a cut in time by a factor of
two to was obtained.
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Since the focus of this chapter is to provide a less obtuse and nlore general derivation uf
thermalhydraulic system equations than Porse-hing's method, a full comparison of the
performance of the fully- and semi-implicit tnethods will not be made.

Suffice it to say that, in general, the semi-implicit method has a Courant limit on the
maximum time step that can be taken in order to ensure stability"

The fully-implicit method does not have this limitation. As the Courant time step limit is
determined by the nodal residence time~ the tinle step limit is dependant on the node
sizes and the flows through the nodes.

Practical simulations have a further time step constraints such as: the tracking of
movement ofvalves, the maintenance of accuracy, synchronizing of report times, etc.

Thus, the choice between the semi- or fully-implicit method depends on the time per
iteration multiplied by the number of iterations required to reach the largest time step
permitted by the simulation problem.
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For example, for a 9 node case, the semi-implicit method required 0.10 seconds per
iteration and required 2 iterations to meet the report time of 1.0 seconds.

6-33

The fully-implicit method meet the report time in one iteration which took 0.14 seconds.

At 36 nodes however, the semi-implicit method took 2 x 0.71 seconds while the fully­
implicit method took 2.12 seconds.

Clearly, one method is not superior to the other in all cases.

Pressure determination involves the use ofproperty derivatives. To avoid the numerical
problems associated with discontinuities, smooth functions for properties must be used,
such as those derived by [GAR88, GAR89 and GAR92].

These functions and routines permit the quick and fast evaluation of dP and d T given
dM and dH for all water phases.

Automatic adjustment is provided to prevent P and T drift from values consistent with
current M and H values. These routines are non-iterative, essential for real-time
simulation.
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6.6 Conclusion

The FIBS approach for thermalhydraulic system simulation has been compared to the
classic work of Porsching. Porsching's algorithm is derived as a subset of the fully
implicit approach.

Focusing on the system Jacobian, as Porsching did, focuses on the perturbation of the
system as a whole.

Although general, it tends to obscure the interaction of the main players in typical
thermalhydraulic systems: flow and pressure.

The FIBS form is shown to be more general than Porsching's method, yet less obtuse.

The interplay of flow and pressure is clarified and coding is simplified.

6-34
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6.7 Exercises

6-35

1. Rewrite the conservation equations for the 4 node, 5 link case with various explicit /
implicit switches set for the following cases:
a. fully explicit
b. diagonally implicit
c. semi-implicit solution scheme (implicit in flow and pressure, explicit in mass

and enthalpy)
d. fully-implicit solution scheme (implicit in flow and pressure, mass and

enthalpy).

2. Build a simulation code that solves the thennalhydraulic equations for a general
node-link network for the explicit case using the supplied skeleton code as a starting
point. Use the node-link diagrams and equations as developed in chapter 3, the
water property routines as developed in chapter 4, the rate fonn of the equation of
state as developed in chapter 5 and the explicit solution as developed in this chapter.

3. Improve upon your solution to question 2 by implementing a diagonally implicit
solution procedure. Is the solution more stable? Is there a cost penalty?
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4. Implement a semi-implicit solution scheme (implicit in flow and pressure, explicit
in mass and enthalpy). Is the solution more stable? Is there a cost penalty?

5. Implement a fully-implicit solution scheme (implicit in flow and pressure, mass and
enthalpy). Is the solution more stable? Is there a cost penalty?
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Figure 6.1 The four comertone equations for tnennalhydraulic system simulation and the flow of information
between them.
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Figure 6.2 The simple 4 node - 5 link example.
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